Appearance Based Qualitative Image Description for Object Class Recognition

نویسندگان

  • Johan Thureson
  • Stefan Carlsson
چکیده

The problem of recognizing classes of objects as opposed to special instances requires methods of comparing images that capture the variation within the class while they discriminate against objects outside the class. We present a simple method for image description based on histograms of qualitative shape indexes computed from the combination of triplets of sampled locations and gradient directions in the image. We demonstrate that this method indeed is able to capture variation within classes of objects and we apply it to the problem of recognizing four different categories from a large database. Using our descriptor on the whole image, containing varying degrees of background clutter, we obtain results for two of the objects that are superior to the best results published so far for this database. By cropping images manually we demonstrate that our method has a potential to handle also the other objects when supplied with an algorithm for searching the image. We argue that our method, based on qualitative image properties, capture the large range of variation that is typically encountered within an object class. This means that our method can be used on substantially larger patches of images than existing methods based on simpler criteria for evaluating image similarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative 3D Surface Reconstruction from Images

Prior to the advent of appearance-based recognition in the early 1990’s, object categorization researchers modeled the prototypical shape of an object, seeking models that were invariant to changes in color, texture, and minor within-class shape deformation. While these categorical models were well-motivated, they could not be reliably recovered from real images of real objects, and eventually ...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

An Experimental Comparison of Appearance and Geometric Model Based Recognition

Abst rac t . This paper describes an experimental investigation of the recognition performance of two approaches to the representation of objects for recognition. The first representation, generally known as appearance modelling, describes an object by a set of images. The image set is acquired for a range of views and illumination conditions which are expected to be encountered in subsequent r...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004